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1 Bounding

One of the most useful ways to exploit a divisibility condition is to establish an inequality. We can
make use of the following simple fact:

Lemma 1.1. If a, b ∈ Z and a | b, then |a| ≤ |b| or b = 0.

Example 1 (EGMO TST 2025). Consider a sequence of positive integers a1, a2, . . . , ak satisfying
1 ≤ a1 < a2 < . . . < ak ≤ k2 for a positive integer k. Determine all possible values of ak − a1 if
for all i, j ∈ {1, 2, 3, . . . , k}, the sum i+ j divides iai + jaj .

Proof. We claim that the only possible value of ak − a1 is k2 − 1. This is achieved when ai = i2,
which can be checked to satisfy the conditions.

Now let’s prove that this is the only possible value. From the divisibility condition with j = i+ 1,
we have

2i+ 1 | iai + (i+ 1)ai+1

=⇒ 2i+ 1 | i(ai − ai+1)

=⇒ 2i+ 1 | ai+1 − ai.

Note that the last step uses the fact that gcd(i, 2i + 1) = 1. As we know that ai+1 > ai, we can
conclude from this divisibility that that ai+1 − ai ≥ 2i+ 1. Hence,

ak − a1 =
k−1∑
i=1

ai+1 − ai ≥ k2 − 1.

But we also know ak − a1 ≤ k2 − 1 as ak ≤ k2 and a1 ≥ 1. So we must have ak − a1 = k2 − 1.

Example 2 (ISL 2021). Find all positive integers n ≥ 1 such that there exists a pair (a, b) of
positive integers, such that a2 + b+ 3 is not divisible by the cube of any prime, and

n =
ab+ 3b+ 8

a2 + b+ 3
.

Proof. Note that

(a+ 3)− n =
(a+ 1)3

a2 + b+ 3
.

Hence,
a2 + b+ 3 | (a+ 1)3.
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Since a2 + b+ 3 is cube-free, we can see that

a2 + b+ 3 | (a+ 1)2.

For any a, b ∈ N, we have
(a+ 1)2 < 2(a2 + b+ 3)

so for the divisibility to hold, we must have

a2 + b+ 3 = (a+ 1)2

=⇒ b = 2a− 2.

Plugging this in yields n = 2.

1.1 Problems

1. (CMO 2011). Consider 70-digit numbers with the property that each of the digits 1, 2, 3, ..., 7
appear 10 times in the decimal expansion of n (and 8, 9, 0 do not appear). Show that no
number of this form can divide another number of this form.

2. (ToT 2019). Let a and b be distinct positive integers. Prove that there are only finitely many
positive integers n such that

an + bn | an+1 + bn+1.

3. (CMO 2019). Let a, b be positive integers such that a+ b3 is divisible by a2 + 3ab+ 3b2 − 1.
Prove that a2 + 3ab+ 3b2 − 1 is divisible by the cube of an integer greater than 1.

4. (APMO 2002). Find all positive integers a and b such that

a2 + b

b2 − a
and

b2 + a

a2 − b

are both integers.

5. (APMO 2013). Determine all positive integers n for which
n2 + 1

[
√
n]2 + 2

is an integer. Here [r]

denotes the greatest integer less than or equal to r.

2 p-adic Valuations

The p-adic valuation is an important concept for handling number theory problems.

Definition. Let p be a prime and n be an integer. The p-adic valuation of n, denoted as vp(n)
is the largest power of p which divides n. In other words,

pvp(n) | x but pvp(n)+1 ∤ x.

Note that vp(0) = ∞. Let’s first establish some basic properties of the p-adic valuation.
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Lemma 2.1. We have

(i) For any a, b ∈ Z, vp(ab) = vp(a) + vp(b).

(ii) For any a, b ∈ Z, vp(a ± b) ≥ min{vp(a), vp(b)}. In particular, if vp(a) < vp(b), then
vp(a± b) = vp(a).

The p-adic valuation can also be extended to rational arguments. In particular, vp(
a
b ) = vp(a) −

vp(b).

Example 3 (ISL 2011). Consider a polynomial P (x) =
∏9

j=1(x + dj), where d1, d2, . . . d9 are
nine distinct integers. Prove that there exists an integer N, such that for all integers x ≥ N the
number P (x) is divisible by a prime number greater than 20.

Proof. Note that there are eight primes p1, p2, . . . , p8 ≤ 20. Let T be an integer such that

vpi(dj − dk) < T for all 1 ≤ i ≤ 8, 1 ≤ j < k ≤ 9.

Assume for the sake of contradiction that there are infinitely many a such that P (a) only has
prime factors in {p1, . . . , p8}. Let a be sufficiently large. Then for each 1 ≤ j ≤ 9 we must have
vpi(a + dj) ≥ T for some 1 ≤ i ≤ 8. By Pigeonhole Principle, two of these will have the same pi.
Without loss of generality, say

vp1(a+ d1) ≥ T, vp1(a+ d2) ≥ T.

Then

vp1(d2 − d1) = vp1 ((a+ d2)− (a+ d1))

≥ min{vp1(a+ d1), vp1(a+ d2)}
≥ T

> vp1(d2 − d1),

contradiction.

2.1 Problems

1. (Putnam 2024). Determine all positive integers n for which there exists positive integers a,
b, and c satisfying

2an + 3bn = 4cn.

2. (ISL 2009). Let f be a non-constant function from the set of positive integers into the set of
positive integer, such that a−b divides f(a)−f(b) for all distinct positive integers a, b. Prove
that there exist infinitely many primes p such that p divides f(c) for some positive integer c.

3. (IMO 1984). Let a, b, c, d be odd integers such that 0 < a < b < c < d and ad = bc. Prove
that if a+ d = 2k and b+ c = 2m for some integers k and m, then a = 1.
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4. (APMO 2017). Call a rational number r powerful if r can be expressed in the form
pk

q
for

some relatively prime positive integers p, q and some integer k > 1. Let a, b, c be positive
rational numbers such that abc = 1. Suppose there exist positive integers x, y, z such that
ax + by + cz is an integer. Prove that a, b, c are all powerful.

5. (ISL 2013). Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, · · ·
and a positive integer N such that for every integer k > N , the number akak−1 · · · a1 is a
perfect square.

3 Lifting the Exponent

Theorem 1 (LTE). Let x and y be integers and let n be a positive integer. Let p > 2 be a prime
such that p | x− y and p ∤ x, y. Then

vp(x
n − yn) = vp(x− y) + vp(n).

Proof. We will first consider the case where p ∤ n.

Lemma 3.1. If p ∤ n, vp(xn − yn) = vp(x− y).

First note that

xn − yn

x− y
= xn−1 + xn−2y + . . .+ yn−1

≡ nxn−1 (mod p)

So we see that vp(x
n − yn) = vp(x− y). Now let’s consider n = p.

Lemma 3.2. If p = n, vp(x
n − yn) = vp(x− y) + 1.

Let x = kp+ y for some k ∈ Z. Then

xp − yp

x− y
=

(kp+ y)p − yp

(kp+ y)− y

=

∑p
i=1

(
p
i

)
(kp)iyp−i

kp

=

p∑
i=1

(
p

i

)
(kp)i−1yp−i

= pyp−1 +

(
p

2

)
(kp)yp−2 + . . .

= pyp−1 + (. . .) p2.

So vp(x
p− yp) = vp(x− y)+1. Now say n = pkq for p ∤ q. We can apply the first lemma to see that

vp

(
xp

kq − yp
kq
)
= vp

(
xp

k − yp
k
)
.
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Then by the second lemma,

vp

(
xp

k − yp
k
)
= vp

(
xp

k−1 − yp
k−1

)
+ 1

= vp

(
xp

k−2 − yp
k−2

)
+ 2

= vp(x− y) + k.

Altogether, we have vp(x
n − yn) = vp(x− y) + vp(n) as desired.

Example 4 (IMOC 2024). Find all positive integers n such that n(2n − 1) is a perfect square.

Proof. We claim that n = 1 is the only possibility. For n > 1, let p be a prime divisor of n, so
n = pr. Now consider

n(2n − 1) = pr(2p − 1)

(
2pr − 1

2p − 1

)
.

Let q be any prime divisor of 2p − 1. Note that q ̸= p. The key is to consider taking vq of this
product. We have

vq (n(2
n − 1)) = vq(p) + vq(r) + vq(2

p − 1) + vq

(
2pr − 1

2p − 1

)
= 2vq(r) + vq(2

p − 1)

by applying LTE. Since n(2n − 1) should be a perfect square, we can conclude that vq(2
p − 1) is

even. However, q was any prime factor of 2p − 1 so by this argument, we see that 2p − 1 must be a
perfect square. But this is impossible since 2p − 1 ≡ 3 (mod 4) so we are done.

Example 5 (ISL 2014). Find all triples (p, x, y) consisting of a prime number p and two positive
integers x and y such that xp−1 + y and x+ yp−1 are both powers of p.

Proof. If p = 2, then clearly x+ y = 2k works.

Now consider p > 2. If p | x, then we quickly run into problems as we must have vp(x
p−1) ̸= vp(y)

or vp(y
p−1) ̸= vp(x). So p ∤ x, y. In particular, by FLT,

x ≡ y ≡ −1 (mod p).

WLOG y ≥ x and so yp−1 + x ≥ xp−1 + y. Since they are both powers of p, we must have

xp−1 + y | yp−1 + x

=⇒ xp−1 + y | x(p−1)2 + x

=⇒ xp−1 + y | xp(p−2) + 1.

Now we can apply LTE to compute

vp

(
xp(p−2) + 1

)
= vp(x+ 1) + 1.

5 of 17



2025 Summer Camp Divisibility Victor Rong

Since xp−1 + y is supposed to be a prime power, this implies that

xp−1 + y | p(x+ 1)

=⇒ xp−1 + y ≤ p(x+ 1)

=⇒ xp−1 + x ≤ p(x+ 1)

=⇒ xp−2 ≤ p.

However, x ≡ −1 (mod p) so x ≥ p− 1. This is only possible with p = 3 and x = 2.

It remains to find y such that y + 4 and y2 + 2 are powers of 3. Let y = 3a − 4. Then we have

y2 + 2 = (3a − 4)2 + 2

= 32a − 8 · 3a + 18.

For a ≥ 3, this cannot be a power of 3. Checking a = 1 and a = 2, we find that only a = 2 works,
giving solutions (2, 5, 3) and (5, 2, 3).

It may also be useful to know the following theorem, which is citable on olympiads.

Theorem 2 (Zsigmondy’s Theorem). Let a > b ≥ 1 be relatively prime integers. For any n ≥ 2,
an − bn has a prime divisor p which does not divide ak − bk for any 1 ≤ k < n except when

• n = 2 and a+ b is a power of 2;

• (a, b, n) = (2, 1, 6).

3.1 Problems

1. (CMO 2025). Determine all positive integers a, b, c, p, where p and p+2 are odd primes and

2apb = (p+ 2)c − 1.

2. (ISL 2010). Find all pairs (m,n) of nonnegative integers for which

m2 + 2 · 3n = m
(
2n+1 − 1

)
.

3. (USAJMO 2024). Let a(n) be the sequence defined by a(1) = 2 and a(n+1) = (a(n))n+1− 1
for each integer n ≥ 1. Suppose that p > 2 is a prime and k is a positive integer. Prove that
some term of the sequence a(n) is divisible by pk.

4. (RMM 2012). Prove that there are infinitely many positive integers n such that 22
n+1 + 1 is

divisible by n but 2n + 1 is not.

5. (USATSTST 2018). For which positive integers b > 2 do there exist infinitely many positive
integers n such that n2 divides bn + 1?
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4 !!

Theorem 3 (Legendre’s Theorem). For a prime p and natural number n,

vp(n!) =

∞∑
i=1

⌊
n

pi

⌋
.

Theorem 4 (Kummer’s Theorem). For a prime p and integers n ≥ m ≥ 0, vp
((

n
m

))
is equal to

the number of carries when adding m and n−m in base p.

Example 6 (IMO 2019). Find all pairs (k, n) of positive integers such that

k! = (2n − 1)(2n − 2)(2n − 4) · · · (2n − 2n−1).

Proof. The idea is to consider v2 of both sides. By Legendre’s Theorem, we have

v2(k!) =
∞∑
i=1

⌊
k

2i

⌋
< k

On the other side, which we denote as R, we have

v2(R) = v2(2
n − 1) + v2(2

n − 2) + . . .+ v2(2
n − 2n−1)

= 0 + 1 + . . .+ (n− 1)

=
n(n− 1)

2
.

Hence, k > n(n−1)
2 . At this point, various bounding approaches work. A particularly clean way to

finish, though, is to now consider v3 of both sides.

On the left, we have

v3(k!) =

∞∑
i=1

⌊
k

3i

⌋
≥ k − 2

3
.

For the right side, note that by LTE, v3(2
2j − 1) = 1 + v3(j). Hence,

v3(R) =
⌊n
2

⌋
+
⌊n
6

⌋
+ . . .

<
3n

4
.

Together, these give 9n
4 + 2 > n(n−1)

2 which only holds for n ≤ 6. Checking these cases manually
gives n = 1, k = 1 and n = 2, k = 3.

4.1 Problems

1. (CMO 2024). Jane writes down 2024 natural numbers around the perimeter of a circle. She
wants the 2024 products of adjacent pairs of numbers to be exactly the set {1!, 2!, . . . , 2024!}.
Can she accomplish this?
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2. (ISL 2023). For positive integers n and k ≥ 2, define Ek(n) as the greatest exponent r such
that kr divides n!. Prove that there are infinitely many n such that E10(n) > E9(n) and
infinitely many m such that E10(m) < E9(m).

3. (USAMO 2016). Prove that for any positive integer k,

(k2)! ·
k−1∏
j=0

j!

(j + k)!

is an integer.

4. (ISL 2012). Determine all integers m ≥ 2 such that every n with m
3 ≤ n ≤ m

2 divides the
binomial coefficient

(
n

m−2n

)
.

5. (ISL 2007). For every integer k ≥ 2, prove that 23k divides the number(
2k+1

2k

)
−
(

2k

2k−1

)
but 23k+1 does not.

5 Functional Equations

When dealing with divisibility conditions in function equations, there are a few very useful ideas.

1. Make the right side of the divisiblity condition as “forcing” as possible, i.e. prime or prime
power

2. If you prove that f(n) = g(n) for some known g and n in infinite set S, you can often choose
N ∈ S arbitrarily large and prove that f(n) = g(n) for all n << N .

We will see this recipe in the next example.

Example 7 (ISL 2004). Find all functions f : N → N satisfying

f2 (m) + f (n) |
(
m2 + n

)2
for any two positive integers m and n.

Proof. Let P (m,n) denote the assertion. We will first prove that f(p− 1) = p− 1 for all primes p.
From P (1, 1) we see

f(1)2 + f(1) | 4
=⇒ f(1) = 1.

Now for any prime p, consider P (1, p− 1). We have

f(1)2 + f(p− 1) | p2

=⇒ f(p− 1) = p− 1

or f(p− 1) = p2 − 1.
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To resolve this ambiguity, assume for the sake of contradiction that f(p − 1) = p2 − 1 for some p
and take P (p− 1, p− 1):

f(p− 1)2 + f(p− 1) | ((p− 1)2 + p− 1)2

=⇒ (p2 − 1)p2 | (p− 1)2p2

which is impossible due to size. Hence, f(p− 1) = p− 1 for all primes p.

Now, consider P (m, p− 1) for any m ∈ N and any prime p. This gives

f(m)2 + p− 1 | (m2 + p− 1)2

=⇒ f(m)2 + p− 1 |
(
m2 − f(m)2

)2
.

Since this is true for all primes p, the right hand side must be 0 and so f(m) = m for all m ∈ N.
It is easy to check that function indeed works.

The above strategy is particularly effective when the solution set for f is easy to understand. When
this is not the case, more ad-hoc ideas are often necessary.

Example 8 (IMO 2011). Let f be a function from the set of integers to the set of positive
integers. Suppose that, for any two integers m and n, the difference f(m)− f(n) is divisible by
f(m − n). Prove that, for all integers m and n with f(m) ≤ f(n), the number f(n) is divisible
by f(m).

Proof. Let P (m,n) denote the assertion. We will first prove that f is even, i.e. f(n) = f(−n).

From P (m, 0), we have

f(m) | f(m)− f(0)

=⇒ f(m) | f(0) ∀m ∈ Z.

Now take P (0, n):

f(−n) | f(0)− f(n)

=⇒ f(−n) | f(n).

Similarly, from P (0,−n), we have f(n) | f(−n). Hence, f(n) = f(−n), as desired.

Now the key idea is that the problem’s divisibility condition is constrained by size. Consider the
following:

P (m,n) =⇒ f(m− n) | f(m)− f(n)

P (m,m− n) =⇒ f(n) | f(m)− f(m− n)

P (m− n,−n) =⇒ f(m) | f(m− n)− f(−n)

=⇒ f(m) | f(m− n)− f(n)

Hence, we have three natural numbers {a, b, c} = {f(m), f(n), f(m− n)} for which

a | b− c, b | c− a, c | a− b.

Say WLOG that 0 < a ≤ b ≤ c. Then from c | a − b, we must have a = b and furthermore,
a | c, b | c. Thus, f(m) ≤ f(n) =⇒ f(m) | f(n).
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5.1 Problems

1. (ISL 2013). Let Z>0 be the set of positive integers. Find all functions f : Z>0 → Z>0 such
that

m2 + f(n) | mf(m) + n

for all positive integers m and n.

2. (ISL 2019). Find all functions f : Z>0 → Z>0 such that a + f(b) divides a2 + bf(a) for all
positive integers a and b with a+ b > 2019.

3. (USATSTST 2022). Let N denote the set of positive integers. A function f : N → N has the
property that for all positive integers m and n, exactly one of the f(n) numbers

f(m+ 1), f(m+ 2), . . . , f(m+ f(n))

is divisible by n. Prove that f(n) = n for infinitely many positive integers n.

4. (ISL 2011). Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers
to itself, such that for all integers x and y the difference f(x)− f(y) divides xn − yn.

5. (ISL 2016). Denote by N the set of all positive integers. Find all functions f : N → N such
that for all positive integers m and n, the integer f(m) + f(n) −mn is nonzero and divides
mf(m) + nf(n).

6 Order

Definition. Let n > 1 be a natural number. For a relatively prime to n, the order of a modulo
n, denoted as ordn(a), is the smallest natural number such that

aordn(a) ≡ 1 (mod n).

By the pigeonhole principle, such a natural number must exist. Euler’s totient function gives a
specific example of such an exponent although it may not be the smallest:

aϕ(n) ≡ 1 (mod n).

The following lemma is crucial for understanding the order.

Lemma 6.1. If ak ≡ 1 (mod n) then ordn(a) | k.

Proof. Let k = q ordn(a)+r for 0 ≤ r < ordn(a). Assume for the sake of contradiction that ordn(a)
does not divide k and hence r ̸= 0.

We have

ak ≡ 1 (mod n)

=⇒ aq ordn(a)+r ≡ 1 (mod n)

=⇒
(
aordn(a)

)q
· ar ≡ 1 (mod n)

=⇒ ar ≡ 1 (mod n).

However, this contradicts the minimality of ordn(a), and so ordn(a) must have divided k.
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Remark. This is closely related to the lemma that states gcd(as − 1, at − 1) = agcd(s,t) − 1.

Example 9. Find all n ∈ N such that n | 2n − 1.

Proof. Clearly n = 1 works. Let’s now consider n > 1.

Take p to be the minimal prime which divides n. Note that p ̸= 2. Then we have

p | 2n − 1 =⇒ ordp(2) | n.

However, ordp(2) ≤ p − 1 < p. Since we picked p to be the minimal prime divisor of n, we must
have

ordp(2) = 1 =⇒ 21 ≡ 1 (mod p),

which is impossible.

Hence, n = 1 is the only solution.

Example 10. Let p be a prime. If q is a prime divisor of np−1
n−1 for some n ∈ N, prove that q = p

or q ≡ 1 (mod p).

Proof. We proceed in two cases.

Case 1. q | n− 1

In this case, we will prove that q = p. Since n ≡ 1 (mod q), we have

np − 1

n− 1
≡ 0 (mod q)

=⇒ np−1 + . . .+ 1 ≡ 0 (mod q)

=⇒ p ≡ 0 (mod q)

and so we must have q = p.

Case 2. q ∤ n− 1 Since q | np − 1, the order ordq(n) must be 1 or p. Since q ∤ 1, it must be p. But
we also know that ordq(n) | q − 1 and so q ≡ 1 (mod p).

For a prime p, the set of orders are well-understood, thanks to the existence of primitive roots
modulo p.

Definition. Let n be a natural number. For g relatively prime to n, g is a primitive root if
ordn(g) = ϕ(n).

In particular, {1, g, . . . , gϕ(n)−1} taken modulo n are exactly all the relatively prime elements to n.
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Theorem 5. Let p be a prime. There exists a primitive root g such that ordp(g) = p− 1.

The existence of at least one primitive root actually implies that there are ϕ(p− 1) primitive roots.

It is often convenient to interpret the set {1, 2, . . . , p− 1} as {1, g, . . . , gp−2} modulo p.

Example 11. Let n be a positive integer and let p > n+ 1 be a prime. Prove that p divides

1n + 2n + . . .+ (p− 1)n.

Proof. Let g be a primitive root. Then

p−1∑
i=1

in ≡
p−2∑
j=0

gnj (mod p)

≡ g(p−1)n − 1

gn − 1
(mod p)

≡ 0

as desired. Crucially, we needed gn − 1 ̸≡ 0 (mod p) since n < p− 1.

6.1 Problems

1. Prove that n | ϕ(an − 1) for all a, n ∈ N.
2. (USATST 2003). Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | rp + 1, r | pq + 1.

3. (China 2006). Find all positive integer pairs (a, n) such that (a+1)n−an

n is an integer.

4. (ISL 2006). Find all integer solutions of the equation

x7 − 1

x− 1
= y5 − 1.

5. (IMO 2003). Let p be a prime number. Prove that there exists a prime number q such that
for every integer n, the number np − p is not divisible by q.
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7 Vieta Jumping

Vieta jumping, popularized by the following example, is a technique used to solve polynomial-like
Diophantine equations. By interpreting the equation as a polynomial in a single variable, we can
“jump” from one solution to another using Vieta’s formulas.

Example 12 (IMO 1988). Let a and b be two positive integers such that ab+ 1 divides a2 + b2.

Show that a2+b2

ab+1 is a perfect square.

Proof. Fix k ∈ Z and consider the set of solutions (a, b) ∈ N2
0 to

a2 + b2

ab+ 1
= k ⇐⇒ a2 − kab+ b2 − k = 0.

Assume for the sake of contradiction that k is not a perfect square. Let (a0, b0) be the solution
that minimizes a+ b across all solutions. Without loss of generality, say a0 ≤ b0. Note that a0 ̸= 0
since otherwise, k = b20.

Consider the quadratic x2 − kxa0 + a20 − k. We know that b0 is one solution. By Vieta’s, there is
another solution b∗ where

b∗ = ka0 − b,

b∗ =
a20 − k

b0
.

From the first equation, we know that b∗ ∈ Z. Furthermore, we must have b∗ > 0 since a20 − k ̸= 0

and
a20+b2∗
a0b∗+1 = k > 0.

Finally, note that

b∗ =
a20 − k

b0
< b0.

This is a contradiction as (b∗, a0) has a smaller sum than (a0, b0) and so we are done.

7.1 Problems

1. (Iran 2013). Suppose that a, b are two odd positive integers such that 2ab + 1 | a2 + b2 + 1.
Prove that a = b.

2. (IMO 2007). Let a and b be positive integers. Show that if 4ab − 1 divides (4a2 − 1)2, then
a = b.

3. (Romania 2004). Let a, b be two positive integers, such that ab ̸= 1. Find all the integer
values that f(a, b) can take, where

f(a, b) =
a2 + ab+ b2

ab− 1
.
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4. (ISL 2017). Find the smallest positive integer n or show no such n exists, with the fol-
lowing property: there are infinitely many distinct n-tuples of positive rational numbers
(a1, a2, . . . , an) such that both

a1 + a2 + · · ·+ an and
1

a1
+

1

a2
+ · · ·+ 1

an

are integers.

5. (ISL 2019). Let a and b be two positive integers. Prove that the integer

a2 +

⌈
4a2

b

⌉
is not a square. (Here ⌈z⌉ denotes the least integer greater than or equal to z.)
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8 Problems

A1. (Poland 2023). Given a sequence of positive integers a1, a2, a3, . . . such that for any positive
integers k, l we have k + l | ak + al. Prove that for all positive integers k > l, ak − al is divisible
by k − l.

A2. (IMO 2023). Determine all composite integers n > 1 that satisfy the following property: if
d1, d2, . . ., dk are all the positive divisors of n with 1 = d1 < d2 < · · · < dk = n, then di divides
di+1 + di+2 for every 1 ≤ i ≤ k − 2.

A3. (Putnam 2018). Find all positive integers n < 10100 for which simultaneously n divides 2n,
n− 1 divides 2n − 1, and n− 2 divides 2n − 2.

A4. (APMO 2012). Determine all the pairs (p, n) of a prime number p and a positive integer n
for which np+1

pn+1 is an integer.

A5. (ISL 2022). Find all positive integers n > 2 such that

n! |
∏

p<q≤n,p,q primes

(p+ q).

A6. (APMO 2022). Find all pairs (a, b) of positive integers such that a3 is multiple of b2 and b− 1
is multiple of a− 1.

A7. (Iran 2024). For a given positive integer number n find all subsets {r0, r1, · · · , rn} ⊂ N such
that

nn + nn−1 + · · ·+ 1|nrn + · · ·+ nr0 .

B1. (APMO 2016). A positive integer is called fancy if it can be expressed in the form

2a1 + 2a2 + · · ·+ 2a100 ,

where a1, a2, · · · , a100 are non-negative integers that are not necessarily distinct. Find the smallest
positive integer n such that no multiple of n is a fancy number.

B2. (USAMO 2012). Find all functions f : Z+ → Z+ (where Z+ is the set of positive integers)
such that f(n!) = f(n)! for all positive integers n and such that m− n divides f(m)− f(n) for all
distinct positive integers m,n.

B3. (ISL 2016). Let n,m, k and l be positive integers with n ̸= 1 such that nk +mnl + 1 divides

nk+l − 1. Prove that m = 1 and l = 2k; or l|k and m = nk−l−1
nl−1

.

B4. (IMO 1990). Determine all integers n > 1 such that

2n + 1

n2

is an integer.

B5. (IMO 2003). Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.
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B6. (IMO 2022). Find all triples (a, b, p) of positive integers with p prime and

ap = b! + p.

B7. (CMO 2021). A function f from the positive integers to the positive integers is called Canadian
if it satisfies

gcd (f(f(x)), f(x+ y)) = gcd(x, y)

for all pairs of positive integers x and y.

Find all positive integers m such that f(m) = m for all Canadian functions f .

B8. (IMO 2018). Let a1, a2, . . . be an infinite sequence of positive integers. Suppose that there is
an integer N > 1 such that, for each n ≥ N , the number

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

is an integer. Prove that there is a positive integer M such that am = am+1 for all m ≥ M .

B9. (RMM 2024). Consider an infinite sequence of positive integers a1, a2, a3, . . . such that a1 > 1
and (2an − 1)an+1 is a square for all positive integers n. Is it possible for two terms of such a
sequence to be equal?

B10. (CMO 2018). Let k be a given even positive integer. Sarah first picks a positive integer N
greater than 1 and proceeds to alter it as follows: every minute, she chooses a prime divisor p of
the current value of N , and multiplies the current N by pk − p−1 to produce the next value of N .
Prove that there are infinitely many even positive integers k such that, no matter what choices
Sarah makes, her number N will at some point be divisible by 2018.

B11. (USAMO 2025). Determine, with proof, all positive integers k such that

1

n+ 1

n∑
i=0

(
n

i

)k

is an integer for every positive integer n.

B12. (ISL 2014). Let c ≥ 1 be an integer. Define a sequence of positive integers by a1 = c and

an+1 = a3n − 4c · a2n + 5c2 · an + c

for all n ≥ 1. Prove that for each integer n ≥ 2 there exists a prime number p dividing an but none
of the numbers a1, . . . , an−1.

C1. (ISL 2010). The rows and columns of a 2n×2n table are numbered from 0 to 2n−1. The cells of
the table have been coloured with the following property being satisfied: for each 0 ≤ i, j ≤ 2n− 1,
the j-th cell in the i-th row and the (i + j)-th cell in the j-th row have the same colour. (The
indices of the cells in a row are considered modulo 2n.) Prove that the maximal possible number
of colours is 2n.

C2. (CMO 2015). Let p be a prime number for which p−1
2 is also prime, and let a, b, c be integers

not divisible by p. Prove that there are at most 1 +
√
2p positive integers n such that n < p and p

divides an + bn + cn.

C3. (Iran 2013). Do there exist natural numbers a, b and c such that a2 + b2 + c2 is divisible by
2013(ab+ bc+ ca)?
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C4. (ISL 2018). Let f : {1, 2, 3, . . . } → {2, 3, . . . } be a function such that f(m + n)|f(m) + f(n)
for all pairs m,n of positive integers. Prove that there exists a positive integer c > 1 which divides
all values of f .

C5. (ISL 2018). Let n ≥ 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distinct
positive integers not exceeding 5n. Suppose that the sequence

a1
b1

,
a2
b2

, . . . ,
an
bn

forms an arithmetic progression. Prove that the terms of the sequence are equal.

C6. (IMO 2016). Let P = A1A2 · · ·Ak be a convex polygon in the plane. The verticesA1, A2, . . . , Ak

have integral coordinates and lie on a circle. Let S be the area of P . An odd positive integer n is
given such that the squares of the side lengths of P are integers divisible by n. Prove that 2S is an
integer divisible by n.

C7. (ISL 2011). Let P (x) and Q(x) be two polynomials with integer coefficients, such that no
nonconstant polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for
every positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.
Prove that Q(x) is a constant polynomial.

C8. (Serbia 2017). Let k be a positive integer and let n be the smallest number with exactly k
divisors. Given n is a cube, is it possible that k is divisible by a prime factor of the form 3j + 2?

C9. (ISL 2014). For every real number x, let ||x|| denote the distance between x and the nearest
integer. Prove that for every pair (a, b) of positive integers there exist an odd prime p and a positive
integer k satisfying ∣∣∣∣∣∣∣∣ apk

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ bpk
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣a+ b

pk

∣∣∣∣∣∣∣∣ = 1.

C10. (Poland 2017). Integers a1, a2, . . . , an satisfy

1 < a1 < a2 < . . . < an < 2a1.

If m is the number of distinct prime factors of a1a2 · · · an, then prove that

(a1a2 · · · an)m−1 ≥ (n!)m.

C11. (China 2010). Let k > 1 be an integer, set n = 2k+1. Prove that for any positive integers
a1 < a2 < · · · < an, the number

∏
1≤i<j≤n(ai + aj) has at least k + 1 different prime divisors.
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