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1 Introduction

There are many classical inequalities to know for olympiad problems and handouts often give long
lists of these theorems which you can commit to memory. Many can be used to prove one another.
However, I find that in practice, two theorems stand out as the easiest “lens” to view inequalities
with. The first is the well-known AM-GM.

Theorem 1 (AM-GM). Let n be a positive integer and let a1, . . . , an be non-negative real
numbers. Then

a1 + · · ·+ an
n

≥ n
√
a1 · · · an.

Equality holds iff all ai are equal.

Remark. For n ≤ 3, the AM-GM inequality can be factored explicitly. In particular,

a2 + b2 − 2ab = (a− b)2,

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)

=
1

2
(a+ b+ c)

(
(a− b)2 + (b− c)2 + (c− a)2

)

Example 1. Let a, b, c be positive reals such that abc = 1. Prove that

a2 + b2 + c2 ≥ a+ b+ c.

Proof. We homogenize the inequality and seek to prove:

a2 + b2 + c2 ≥ (a+ b+ c)
3
√
abc.

By AM-GM, we have
4a2 + b2 + c2

6
≥ a

8
6 b

2
6 c

2
6 = a

3
√
abc.

Similarly,
a2 + 4b2 + c2

6
≥ b

3
√
abc,

a2 + b2 + 4c2

6
≥ c

3
√
abc.

Summing up these inequalities yields the desired result.
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Example 2 (Mexico 2011). Let n be a positive integer. Find all real solutions (a1, a2, . . . , an)
to the system:

a21 + a1 − 1 = a2

a22 + a2 − 1 = a3

· · ·
a2n + an − 1 = a1.

Proof. Rearranging each equation gives

ai(ai + 1) = ai+1 + 1.

So if ai = −1 for some i, we must have ai+1 = −1 and hence all the a’s must be −1. This is a valid
solution. Otherwise, assume ai ̸= −1 for all i. Taking the product, we get

n∏
i=1

ai(ai + 1) =
n∏

i=1

(ai+1 + 1) (1)

=⇒
n∏

i=1

ai = 1. (2)

Now summing all n of the original equations, we get

a21 + · · ·+ a2n = n.

By AM-GM,

1 =
a21 + · · ·+ a2n

n

≥ n

√
a21 · · · a2n

= 1.

So we must have had the equality case where a21 = a22 = · · · = a2n = 1. Since ai ̸= −1 in this case,
we see that we must have ai = 1 for all i. It is easy to check that this works.

So the real solutions are (−1, . . . ,−1) and (1, . . . , 1).

There is also a more general version of the AM-GM inequality with variable weights.

Theorem 2 (Weighted AM-GM). Let n be a positive integer and let a1, . . . , an be non-negative
real numbers. Let w1, . . . , wn be non-negative real numbers with w1 + · · ·+ wn = 1. Then

w1a1 + · · ·+ wnan ≥ aw1
1 · · · awn

n .

Equality holds iff all ai are equal.

Note that the conventional AM-GM is simply weighted AM-GM where all weights are set to 1
n .
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Example 3 (CMO 1995). Let a, b, c be positive reals. Prove that

aabbcc ≥ (abc)
a+b+c

3 .

Proof. By weighted GM-HM, we have

a
a

a+b+c b
b

a+b+c c
c

a+b+c ≥
(
a−1 · a

a+ b+ c
+ b−1 · b

a+ b+ c
+ c−1 · c

a+ b+ c

)−1

(3)

=
a+ b+ c

3
(4)

≥ 3
√
abc. (5)

Taking to the power of a+ b+ c, we get

aabbcc ≥ (abc)
a+b+c

3

as desired.

The other useful theorem is Hölder’s inequality. Let’s begin by discussing Cauchy-Schwarz inequal-
ity, a special instance of Hölder’s inequality.

Theorem 3 (Cauchy-Schwarz Inequality). Let n be a positive integer. For any real numbers
a1, . . . , an and b1, . . . , bn, we have(

a21 + · · ·+ a2n
) (

b21 + · · ·+ b2n
)
≥ (a1b1 + · · ·+ anbn)

2 .

Equality holds iff all ratios are equal, i.e. a1 : b1 = · · · = an : bn.

Cauchy-Schwarz can be used to handle fractions.

Example 4. Show that for all positive reals a, b, c, d,

1

a
+

1

b
+

4

c
+

16

d
≥ 64

a+ b+ c+ d
.

Proof. By Cauchy-Schwarz, we have(
1

a
+

1

b
+

4

c
+

16

d

)
(a+ b+ c+ d) ≥ (1 + 1 + 2 + 4)2 = 64.

Rearranging gives the desired inequality.

Indeed, Cauchy-Schwarz can be written in the following form:
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Theorem 4 (Titu’s Lemma). Let n be a positive integer. For any positive real numbers x1, . . . xn
and y1, . . . , yn, we have

x21
y1

+ · · ·+ x2n
yn

≥ (x1 + · · ·+ xn)
2

y1 + · · ·+ yn
.

Sometimes, a direct application of Titu’s doesn’t work. In these situations, you can use additional
factors.

Example 5 (Nesbitt’s Inequality). Let a, b, c be positive reals. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Proof. By Cauchy-Schwarz,(
a

b+ c
+

c

a+ b
+

b

c+ a

)
(a(b+ c) + b(c+ a) + c(a+ b)) ≥ (a+ b+ c)2 .

So it suffices to prove that
(a+ b+ c)2 ≥ 3 (ab+ bc+ ca) .

After expanding, this is equivalent to

a2 + b2 + c2 ≥ ab+ bc+ ca,

which is true because
a2 + b2

2
≥ ab,

b2 + c2

2
≥ bc,

c2 + a2

2
≥ ca.

Theorem 5 (Hölder’s Inequality). Let n and k be positive integers. Let λ1, . . . , λk be positive
real numbers such that λ1 + · · · + λk = 1. For any k sequences of non-negative real numbers
a1, . . . an; b1, . . . , bn; . . . ; z1, . . . , zn, we have

(a1 + · · ·+ an)
λ1 (b1 + · · ·+ bn)

λ2 · · · (z1 + · · ·+ zn)
λk ≥ aλ1

1 bλ2
1 · · · zλk

1 + · · ·+ aλ1
n bλ2

n · · · zλk
n .

Equality holds iff all ratios are equal, i.e. a1 : b1 : · · · : z1 = · · · = an : bn : · · · : zn.

Though Hölder’s looks extremely intimidating in this form, it usually resembles something closer
to Cauchy-Schwarz. For example, if n = 2, k = 3 and λi =

1
k , then Hölder’s gives

(a31 + a32)(b
3
1 + b32)(c

3
1 + c32) ≥ (a1b1c1 + a2b2c2)

3 ∀ a1, a2, b1, b2, c1, c2 ∈ R≥0.

Hölder’s is excellent against radicals.
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Example 6 (IMO 2001). Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Proof. There are many approaches to this problem (check out Yufei Zhao’s handout for a few) but
the most straightforward solution is to use Hölder’s inequality.

By Hölder’s, we have(
a√

a2 + 8bc
+

b√
b2 + 8ca

+
c√

c2 + 8ab

)2 (
a(a2 + 8bc) + b(b2 + 8ca) + c(c2 + 8ab)

)
≥ (a+ b+ c)3 .

Thus, it suffices to prove that

(a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc

⇐⇒ a3 + b3 + c3 + 3
∑
sym

a2b+ 6abc ≥ a3 + b3 + c3 + 24abc

⇐⇒ 3
∑
sym

a2b ≥ 18abc

which is true by AM-GM, so we are done.

Warning. AM-GM and Hölder’s are useful, but it is still important to study the other classical
inequalities and techniques. For example, these two are powerless against

a3 + b3 + c3 + 3abc ≥ a2b+ ab2 + b2c+ bc2 + c2a+ ca2 ∀ a, b, c ∈ R≥0,

which is just Schur’s inequality. In fact, AM-GM is one of the weakest inequalities. The reason
why most olympiad inequalities are susceptible to it is because contest setters generally select
for problems where knowing powerful techniques is not a large advantage. In particular, certain
techniques such as the n−1 EV method shut down a large class of inequalities. I would recommend
Thomas Mildorf’s handout for reviewing inequality fundamentals.
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2 Fantasy

Imagine a world where all inequalities can be solved elegantly with the right observation...

Example 7. Consider the following three problems.

(i) (Canada 2002). Let a, b, c be positive real numbers. Prove that

a3

bc
+

b3

ca
+

c3

ab
≥ a+ b+ c.

(ii) (ToT 2021). Let a1, . . . , an be positive integers. Prove that⌊
a21
a2

⌋
+ . . .+

⌊
a2n
a1

⌋
≥ a1 + . . .+ an.

(iii) (Balkan 2005). Let a, b, c be positive real numbers. Prove that

a2

b
+

b2

c
+

c2

a
≥ a+ b+ c+

4(a− b)2

a+ b+ c
.

What’s the common theme?

Proof. The idea is to use simple AM-GMs on each term.

(i) By AM-GM, we have

a3

bc
+ b+ c ≥ 3a,

b3

ca
+ c+ a ≥ 3b,

c3

ab
+ a+ b ≥ 3c.

Summing yields the desired inequality.

(ii) By AM-GM, we have
a2i
ai+1

≥ 2ai − ai+1.

Since the right-hand side is an integer, we have the stronger inequality,⌊
a2i
ai+1

⌋
≥ 2ai − ai+1.

Summing over all i yields the desired inequality.

(iii) We have

a2

b
+

b2

c
+

c2

a
− a− b− c =

(
a2

b
− 2a+ b

)
+

(
b2

c
− 2b+ c

)
+

(
c2

a
− 2c+ a

)
=

(a− b)2

b
+

(b− c)2

c
+

(c− a)2

a

≥ (|a− b|+ |b− c|+ |c− a|)2

a+ b+ c

≥ 4(a− b)2

a+ b+ c
.

For the first inequality, we used Cauchy-Schwarz.
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Example 8. Consider the following two problems.

(i) Let a, b, c be non-negative real numbers such that ab+ bc+ ca = 3. Prove that

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1.

(ii) (Mexico 2009). Let a, b, and c be positive numbers satisfying abc = 1. Prove that

1

a3 + 2
+

1

b3 + 2
+

1

c3 + 2
≤ 1.

What’s the common theme?

Proof. The trick is to rearrange the fractions so that it’s the right direction for Cauchy-Schwarz.

(i) Note that 1
a2+2

= 1
2

(
1− a2

a2+2

)
so

1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1 ⇐⇒ a2

a2 + 2
+

b2

b2 + 2
+

c2

c2 + 2
≥ 1.

Now by Cauchy-Schwarz,

a2

a2 + 2
+

b2

b2 + 2
+

c2

c2 + 2
≥ (a+ b+ c)2

a2 + b2 + c2 + 6

=
(a+ b+ c)2

a2 + b2 + c2 + 2ab+ 2bc+ 2ca

= 1.

(ii) By the same trick, it suffices to prove

a3

a3 + 2
+

b3

b3 + 2
+

c3

c3 + 2
≥ 1.

By Cauchy-Schwarz,

a3

a3 + 2
+

b3

b3 + 2
+

c3

c3 + 2
=

a3

a3 + 2abc
+

b3

b3 + 2abc
+

c3

c3 + 2abc

=
a2

a2 + 2bc
+

b2

b2 + 2ca
+

c2

c2 + 2ab

≥ (a+ b+ c)2

a2 + b2 + c2 + 2ab+ 2bc+ 2ca

= 1.
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Example 9. Consider the following three problems.

(i) (Vietnam 1998). Let x1, . . . , xn be positive real numbers such that

1

x1 + 1998
+ . . .+

1

xn + 1998
=

1

1998
.

Prove that
n
√
x1 · · ·xn
n− 1

≥ 1998.

(ii) (USAMO 1998). Let a0, a1, · · · , an be numbers from the interval (0, π/2) such that

tan
(
a0 −

π

4

)
+ tan

(
a1 −

π

4

)
+ · · ·+ tan

(
an − π

4

)
≥ n− 1.

Prove that
tan a0 tan a1 · · · tan an ≥ nn+1.

(iii) Let n and k be positive integers. Show that for any positive reals a1, . . . , an such that
a1 + . . .+ an = 1, we have

n∏
i=1

(
1− aki
aki

)
≥ (nk − 1)n.

What’s the common theme?

Proof. The idea is to expand 1.

(i) Define yi =
1998

xi+1998 ∈ R>0. Then xi = 1998
(
1−yi
yi

)
. With these variables, we have

y1 + · · ·+ yn = 1

and we want to prove
n∏

i=1

(
1− yi
yi

)
≥ (n− 1)n.

For any i, we have

1− yi = (y1 + · · ·+ yn)− yi

=
∑
j ̸=i

yj

≥ (n− 1)
∏
j ̸=i

y
1

n−1

j .

So then

n∏
i=1

(
1− yi
yi

)
≥ (n− 1)n

n∏
i=1

y−1
i

∏
j ̸=i

y
1

n−1

j


= (n− 1)n

as desired.
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(ii) Define yi as
1

tan ai+1 . Then the condition becomes

y1 + · · ·+ yn ≤ 1

and the inequality becomes
n∏

i=0

(
1− yi
yi

)
≥ nn+1.

This is essentially the same inequality as the one we reduced to in (i), and the same solution
works.

(iii) For any i, we have

1− aki = (a1 + · · ·+ an)
k − aki

=
∑

j1,...,jk
(j1,...,jk )̸=(i,...,i)

aj1 · · · ajk

≥ (nk − 1)

 ∏
j1,...,jk

(j1,...,jk) ̸=(i,...,i)

aj1 · · · ajk


1

nk−1

= (nk − 1)a
knk−1−k

nk−1

i

∏
j ̸=i

a
knk−1

nk−1

j .

For example, if n = 2, k = 2, we have

1− a21 = (a1 + a2)
2 − a21

= a1a2 + a1a2 + a22

= 3 3

√
a21a

4
2.

So we have

n∏
i=1

(
1− aki
aki

)
≥ (nk − 1)n

n∏
i=1

a
knk−1−k

nk−1
−k

i

∏
j ̸=i

a
knk−1

nk−1

j


= (nk − 1)n

n∏
i=1

a
knk−1−k

nk−1
−k+

knk−1(n−1)

nk−1

i

= (nk − 1)n

as desired.
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Example 10. Consider the following three problems.

(i) (USAJMO 2014). Let a, b, c be real numbers greater than or equal to 1. Prove that

min

(
10a2 − 5a+ 1

b2 − 5b+ 10
,
10b2 − 5b+ 1

c2 − 5c+ 10
,
10c2 − 5c+ 1

a2 − 5a+ 10

)
≤ abc.

(ii) (Serbia 2022). Let a, b and c be positive real numbers and a3 + b3 + c3 = 3. Prove

1

3− 2a
+

1

3− 2b
+

1

3− 2c
≥ 3.

(iii) (USAMO 2004). Let a, b, c > 0. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3.

What’s the common theme?

Proof. The key for these problems is to make 1-variable polynomial bounds.

(i) First note that for any x ≥ 1, x2 − 5x+ 10 > 0. Then we have

(x− 1)5 ≥ 0

=⇒ x5 − 5x4 + 10x3 ≥ 10x2 − 5x+ 1

=⇒ x3 ≥ 10x2 − 5x+ 1

x2 − 5x+ 10
.

Let’s now bound the minimum by their geometric mean:

min

(
10a2 − 5a+ 1

b2 − 5b+ 10
,
10b2 − 5b+ 1

c2 − 5c+ 10
,
10c2 − 5c+ 1

a2 − 5a+ 10

)
≤ 3

√√√√∏
cyc

10a2 − 5a+ 1

b2 − 5b+ 10

= 3

√√√√∏
cyc

10a2 − 5a+ 1

a2 − 5a+ 10

≤ abc

as desired.

(ii) Note that a, b, c < 3
2 as

(
3
2

)3
> 3. If we could prove that

1

3− 2x
≥ ux3 + v

for x ∈ (0, 32) and some suitable constants u, v ∈ R, that would essentially solve the problem.
The trick to deriving this inequality is to set up function P (x) so that

1

3− 2x
≥ ux3 + v ⇐⇒ P (x) := 2ux4 − 3ux3 + 2vx− 3v + 1 ≥ 0.
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Based on the equality case, we need x = 1 to be a root of P . Since P must be non-negative,
we also need a double-root at x = 1. This corresponds to

P (1) = 0 =⇒ u+ v = 1

P ′(1) = 0 =⇒
(
8ux3 − 9ux2 + 2v

)
|x=1= 0

=⇒ u− 2v = 0

Solving gives u = 2
3 , v = 1

3 .

Though this gives us a candidate set of coefficients, we still need to verify that for any
x ∈ (0, 32), we have

1

3− 2x
≥ 2x3 + 1

3
.

This is indeed true as it rearranges into x(x− 1)2(4x+ 2) ≥ 0.

So

1

3− 2a
+

1

3− 2b
+

1

3− 2c
≥

2
(
a3 + b3 + c3

)
+ 3

3
= 3.

(iii) For any x > 0, we have
x5 − x2 + 3 ≥ x3 + 2

as it rearranges into

(x3 − 1)(x2 − 1) = (x− 1)2(x+ 1)(x2 + x+ 1) ≥ 0.

So

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a3 + 2)(b3 + 2)(c3 + 2)

= (a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3)

≥ (a+ b+ c)3

by Hölder’s inequality.
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Example 11. Consider the following three problems.

(i) Let a, b, c be reals with a+ b+ c = 1 and a, b, c ≥ −3
4 . Prove that

a

a2 + 1
+

b

b2 + 1
+

c

c2 + 1
≤ 9

10
.

(ii) (CGMO 2007). Let n be an integer greater than 3, and let a1, a2, · · · , an be non-negative
real numbers with a1 + a2 + · · ·+ an = 2. Determine the minimum value of

a1
a22 + 1

+
a2

a23 + 1
+ · · ·+ an

a21 + 1
.

(iii) (USAMO 2017). Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4

given that a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4.

What’s the common theme?

Proof. We use the tangent line trick for these problems.

(i) Consider f(x) = x
x2+1

. We can compute its derivative, f ′(x) = 1·(x2+1)−x·(2x)
(2x+1)2

. At a = 1
3 , we

have f(a) = 3
10 and f ′(a) = 18

25 . So the tangent line at a = 1
3 is

g(x) = f ′(a)(x− a) + f(a) =
18

25
x+

3

50
.

We claim that for x ≥ −3
4 , g(x) ≥ f(x). Indeed,

18

25
x+

3

50
≥ x

x2 + 1
(6)

⇐⇒ 36x3 + 3x2 − 14x+ 3 ≥ 0 (7)

⇐⇒ (3x− 1)2(4x+ 3) ≥ 0 (8)

so the claim is proved. Now

a

a2 + 1
+

b

b2 + 1
+

c

c2 + 1
≤ 18

25
(a+ b+ c) +

9

50
=

9

10
.

(ii) We claim that the minimum value is 3
2 , which is achieved when a1 = 1, a2 = 1 and the rest

are 0.

Note that for any x ≥ 0, we have
1

1 + x2
≥ 1− x

2
,

as it rearranges into x(x− 1)2 ≥ 0. So

a1
a22 + 1

+
a2

a23 + 1
+ · · ·+ an

a21 + 1
≥

n∑
i=1

ai

(
1− ai+1

2

)
= 2− 1

2

n∑
i=1

aiai+1.
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It now suffices to prove that
n∑

i=1

aiai+1 ≤ 1.

The finish is actually quite tricky from here, and relies on n ≥ 4. Since the sum is cyclic,
we can say without loss of generality that a2 is the largest among the n numbers. Say that
among {a4, . . . , an}, ak is the largest. Then

a1a2 + a2a3 + a3a4 + . . .+ ana1 ≤ (a1a2 + a2a3) +

(
k−1∑
i=3

aiai+1

)
+

(
n∑

i=k

aiai+1

)

≤ (a1a2 + a2a3) +

(
k−1∑
i=3

aiak

)
+

(
n∑

i=k

akai+1

)
≤ a2(2− a2 − ak) + ak(2− a2 − ak)

≤
(
(2− a2 − ak) + (a2 + ak)

2

)2

= 1.

(iii) We claim that the minimum value is 2
3 , which can be achieved at (2, 2, 0, 0). Using the tangent

line trick focusing on equality at x = 2, we see that

1

x3 + 4
≥ 1

4
− x

12
⇐⇒ x(x+ 1)(x− 2)2 ≥ 0.

So

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
≥ 1

4
(a+ b+ c+ d)− 1

12
(ab+ bc+ cd+ da)

= 1− 1

12
(a+ c)(b+ d)

≥ 1− 1

12

(
(a+ c) + (b+ d)

2

)2

=
2

3
.

Remark. In (ii) and (iii), the key bounds can also be derived without explicitly thinking about the
tangent line trick. For example, in (iii), we could have instead used AM-GM after rearranging the
fraction:

a

b3 + 4
=

a

4

(
1− b3

b3 + 4

)
=

a

4

(
1− b3

b3

2 + b3

2 + 4

)

≥ a

4

(
1− b3

3b2

)
=

a

4
− ab

12
.
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Example 12. Consider the following three problems.

(i) (Taiwan 2014). Prove that for positive reals a, b, c we have

3(a+ b+ c) ≥ 8
3
√
abc+

3

√
a3 + b3 + c3

3
.

(ii) Let x1, . . . , xn be non-negative real numbers. Prove that

x1 + x2 + · · ·+ xn ≥ (n− 1) n
√
x1 · · ·xn +

√
x21 + · · ·+ x2n

n
.

(iii) Show that for all non-negative a1, . . . , an,

a1 +
√
a1a2 + · · ·+ n

√
a1 · · · an

n
≤ n

√
a1 ·

a1 + a2
2

· · · a1 + · · ·+ an
n

.

What’s the common theme?

Proof. The key is to set up for Hölder’s.

(i) Taking the cube, we have

(3(a+ b+ c))3 = 27

(
a3 + b3 + c3 + 3

∑
sym

a2b+ 6abc

)
≥ 27

(
a3 + b3 + c3 + 24abc

)
= (8 + 1)(8 + 1)

(
8abc+

a3 + b3 + c3

3

)
≥

(
8

3
√
abc+

3

√
a3 + b3 + c3

3

)3

as desired.

(ii) Squaring gives us

(x1 + · · ·+ xn)
2 =

(
x21 + · · ·+ x2n

)
+
∑
i ̸=j

xixj

≥
(
x21 + · · ·+ x2n

)
+ n(n− 1) n

√
x21 · · ·x2n

= ((n− 1) + 1)

(
(n− 1) n

√
x21 · · ·x2n +

x21 + · · ·+ x2n
n

)
≥ (n− 1) n

√
x1 · · ·xn +

√
x21 + · · ·+ x2n

n

as desired.
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(iii) Let gk denote the geometric mean of a1, . . . , ak and define g0 = 1. We proceed by induction.
For n = 1, the statement is obvious. Now assume the statement holds for n− 1. Then

n

√
a1 ·

a1 + a2
2

· · · a1 + · · ·+ an
n

≥ n

√(
g1 + g2 + · · ·+ gn−1

n− 1

)n−1

·
(
a1 + · · ·+ an

n

)
.

We will apply Hölder’s in a clever manner. Consider g1+g2+···+gn−1

n−1 . We redistribute this into
n terms as follows:

g1 + g2 + · · ·+ gn−1

n− 1
=

n

n(n− 1)
g1 +

n

n(n− 1)
g2 + · · ·+ n

n(n− 1)
gn−1

=

(
n− 1

n(n− 1)
g1

)
+

(
1

n(n− 1)
g1 +

n− 2

n(n− 1)
g2

)
+ · · ·

+

(
n− 2

n(n− 1)
gn−2 +

1

n(n− 1)
gn−1

)
+

(
n− 1

n(n− 1)
gn−1

)
=

1

n

n−1∑
i=0

(
i

n− 1
gi +

n− 1− i

n− 1
gi+1

)

≥ 1

n

n−1∑
i=0

(
giig

n−1−i
i+1

) 1
n−1

=
1

n

n−1∑
i=0

(
a−1
i+1g

i+1
i+1g

n−1−i
i+1

) 1
n−1

=
1

n

n−1∑
i=0

(
a−1
i+1g

n
i+1

) 1
n−1 .

We can now use Hölder’s:

n

√
a1 ·

a1 + a2
2

· · · a1 + . . .+ an
n

≥ n

√(
g1 + g2 + · · ·+ gn−1

n− 1

)n−1

·
(
a1 + . . .+ an

n

)

≥ n

√√√√( 1

n

n−1∑
i=0

(
a−1
i+1g

n
i+1

) 1
n−1

)n−1

·
(
a1 + . . .+ an

n

)

≥ 1

n

n∑
i=1

gi

as desired.
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3 Reality

...now open your eyes.

Example 13 (IMO 2020). The real numbers a, b, c, d are such that a ≥ b ≥ c ≥ d > 0 and
a+ b+ c+ d = 1. Prove that

(a+ 2b+ 3c+ 4d)aabbccdd < 1.

Proof. By weighted AM-GM, we have aabbccdd ≤ a2 + b2 + c2 + d2. After homogenizing, it suffices
to prove that

(a+ 2b+ 3c+ 4d)(a2 + b2 + c2 + d2) < (a+ b+ c+ d)3

a3 + 2b3 + 3c3 + 4d3 a3 + b3 + c3 + d3

+ab2 + ac2 + ad2 +3ab2 + 3ac2 + 3ad2

⇐⇒ +2a2b+ 2bc2 + 2bd2 < +3a2b+ 3bc2 + 3bd2

+3a2c+ 3b2c+ 3cd2 +3a2c+ 3b2c+ 3cd2

+4a2d+ 4b2d+ 4c2d +3a2d+ 3b2d+ 3c2d

+6bcd+ 6acd+ 6abd+ 6abc

⇐⇒ b3 + 2c3 + 3d3 + a2d+ b2d+ c2d < 2ab2 + 2ac2 + 2ad2 + a2b+ bc2 + bd2

+6(bcd+ acd+ abd+ abc)

However, from a ≥ b ≥ c ≥ d > 0, we have

b3 ≤ ab2

2c3 ≤ 2ac2

3d3 ≤ 3bcd

a2d ≤ a2b

b2d ≤ abd

c2d ≤ acd

so summing gives us the desired inequality.

Remark. This is a truly terrible problem. The moral of this is that you shouldn’t always try to
look for a nice solution.

Example 14 (ISL 2016). Let a, b, c be positive real numbers such that min(ab, bc, ca) ≥ 1.
Prove that

3
√

(a2 + 1)(b2 + 1)(c2 + 1) ≤
(
a+ b+ c

3

)2

+ 1.

Proof. The idea is to smooth two variables. We will prove that if xy ≥ 1, then

(x2 + 1)(y2 + 1) ≤

((
x+ y

2

)2

+ 1

)2

.
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Expanding yields ((
x+ y

2

)2

+ 1

)2

≥ (x2 + 1)(y2 + 1)

⇐⇒ (x+ y)4 + 8(x+ y)2 ≥ 16x2y2 + 16x2 + 16y2

⇐⇒ x4 + 4x3y − 10x2y2 + 4xy3 + y4 − 8(x− y)2 ≥ 0

⇐⇒ (x− y)2(x2 + 6xy + y2 − 8) ≥ 0

which is true since x2 + 6xy + y2 ≥ 8xy ≥ 8.

Furthermore,

min

((
a+ b

2

)2

,

(
a+ b

2

)
c,

(
a+ b

2

)
c

)
≥ min(ab, bc, ca) ≥ 1.

Now WLOG a ≥ b, c and let d = a+b+c
3 . We can check that

ad ≥ 1, bc ≥ 1,

(
a+ d

2

)(
b+ c

2

)
≥ 1

and so we can apply our lemma on each of these pairs. Doing so yields

(
a2 + 1

) (
b2 + 1

) (
c2 + 1

) (
d2 + 1

)
≤

((
a+ d

2

)2

+ 1

)2((
b+ c

2

)2

+ 1

)2

≤

((
a+ b+ c+ d

4

)2

+ 1

)4

=
(
d2 + 1

)4
.

Hence,

3
√
(a2 + 1)(b2 + 1)(c2 + 1) ≤

(
a+ b+ c

3

)2

+ 1

as desired.

Example 15 (IMO 2021). Show that the inequality

n∑
i=1

n∑
j=1

√
|xi − xj | ⩽

n∑
i=1

n∑
j=1

√
|xi + xj |

holds for all real numbers x1, . . . xn.

Proof. The key is to note that the left-hand side does not change upon adding a constant. For any
0 < ϵ ≤ 1

2 mini,j |xi + xj |, consider replacing (x1, . . . , xn) with

(x1, . . . , xn) → (x1 + ϵ, . . . , xn + ϵ),

(x1, . . . , xn) → (x1 − ϵ, . . . , xn − ϵ).
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Clearly, the left-hand-side is unaffected. We claim that one of these replacements will cause the
right-hand-side to decrease. Indeed,

√
|x| is strictly concave for x ∈ (0,∞) so∑

i,j

√
|xi + xj − 2ϵ|+

∑
i,j

√
|xi + xj + 2ϵ| < 2

∑
i,j

√
|xi + xj |

and so the claim is proved. Hence, we can choose ϵ = 1
2 mini,j |xi + xj | to force some xi + xj = 0

if such a pair doesn’t already exist. Without loss of generality, say that this is xn−1 = t, xn = −t.
We have

n∑
i=1

n∑
j=1

√
|xi − xj | ⩽

n∑
i=1

n∑
j=1

√
|xi + xj |

⇐⇒ 2
√

|t|+
n−2∑
i=1

(√
|xi − t|+

√
|xi + t|

)
+

n−2∑
i=1

n−2∑
j=1

√
|xi − xj |

⩽ 2
√

|t|+
n−2∑
i=1

(√
|xi − t|+

√
|xi + t|

)
+

n−2∑
i=1

n−2∑
j=1

√
|xi + xj |

⇐⇒
n−2∑
i=1

n−2∑
j=1

√
|xi − xj | ⩽

n−2∑
i=1

n−2∑
j=1

√
|xi + xj |.

We can now induct down. It remains to prove n = 0 and n = 1, both of which are trivial. So we
are done.
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4 Problems

A1. (CMO 2012). Let x, y and z be positive real numbers. Show that

x2 + xy2 + xyz2 ≥ 4xyz − 4.

A2. (CMO 2021). Let n ≥ 2 be some fixed positive integer and suppose that a1, a2, . . . , an are
positive real numbers satisfying a1 + a2 + · · ·+ an = 2n − 1.

Find the minimum possible value of

a1
1

+
a2

1 + a1
+

a3
1 + a1 + a2

+ · · ·+ an
1 + a1 + a2 + · · ·+ an−1

.

A3. Let P (x) be a polynomial with positive coefficients. Prove that for any x ̸= 0,

P (x)P (x−1) ≥ P (1)2.

A4. (CMO 2014). Let a1, a2, . . . , an be positive real numbers whose product is 1. Show that the
sum

a1
1+a1

+ a2
(1+a1)(1+a2)

+ a3
(1+a1)(1+a2)(1+a3)

+ · · ·+ an
(1+a1)(1+a2)···(1+an)

is greater than or equal to 2n−1
2n .

A5. Let a, b be positive real numbers such that a+ b = 1. Prove that

1

ab
+

3

a2 + b2
≥ 5 + 2

√
6.

A6. Let x, y be positive real numbers such that x+ y = 1. Prove that

xx · yy + xy · yx ≤ 1.

A7. Let a, b, c be positive real numbers such that abc = 1. Prove that

a+ b+ c

3
≥ a

a2b+ 2
+

b

b2c+ 2
+

c

c2a+ 2
.

A8. (ELMOSL 2025). Elmo writes positive real numbers on a n × n board such that xi,j is the
number on the i-th row and j-th column. The sum of numbers in a-th row is Ra, and the sum of
numbers in b-th column is Cb. It is known that

n∑
a=1

xa,k
Ra

= 1

for each k = 1, 2, . . . , n. Prove that R1R2 · · ·Rn ≤ C1C2 · · ·Cn.

A9. (CMO 2017). For pairwise distinct nonnegative reals a, b, c, prove that

a2

(b− c)2
+

b2

(c− a)2
+

c2

(b− a)2
> 2.
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A10. (IMO 1995). Let a, b, c be positive reals with abc = 1. Prove that

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2
.

A11. (IMO 2000). Let a, b, c be positive real numbers so that abc = 1. Prove that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

A12. (IMO 2023). Let x1, x2, . . . , x2023 be pairwise different positive real numbers such that

an =

√
(x1 + x2 + · · ·+ xn)

(
1

x1
+

1

x2
+ · · ·+ 1

xn

)
is an integer for every n = 1, 2, . . . , 2023. Prove that a2023 ⩾ 3034.

A13. (ELMOSL 2013). Prove that for all positive reals a, b, c,

1

a+ 1
b + 1

+
1

b+ 1
c + 1

+
1

c+ 1
a + 1

≥ 3
3
√
abc+ 1

3√
abc

+ 1
.

B1. (IMO 2012). Let n ≥ 3 be an integer, and let a2, a3, . . . , an be positive real numbers such that
a2a3 · · · an = 1. Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

B2. (USAMO 2002). Let ABC be a triangle such that(
cot

A

2

)2

+

(
2 cot

B

2

)2

+

(
3 cot

C

2

)2

=

(
6s

7r

)2

,

where s and r denote its semiperimeter and its inradius, respectively. Prove that triangle ABC is
similar to a triangle T whose side lengths are all positive integers with no common divisors and
determine these integers.

B3. (ISL 2020). Suppose that a, b, c, d are positive real numbers satisfying (a+ c)(b+d) = ac+ bd.
Find the smallest possible value of

a

b
+

b

c
+

c

d
+

d

a
.

B4. (USAMO 2013). Find all real numbers x, y, z ≥ 1 satisfying

min(
√
x+ xyz,

√
y + xyz,

√
z + xyz) =

√
x− 1 +

√
y − 1 +

√
z − 1.

B5. (ISL 2001). Let x1, x2, . . . , xn be arbitrary real numbers. Prove the inequality

x1
1 + x21

+
x2

1 + x21 + x22
+ · · ·+ xn

1 + x21 + · · ·+ x2n
<

√
n.

B6. (ISL 2007). Let n be a positive integer, and let x and y be a positive real number such that
xn + yn = 1. Prove that(

n∑
k=1

1 + x2k

1 + x4k

)
·

(
n∑

k=1

1 + y2k

1 + y4k

)
<

1

(1− x) · (1− y)
.
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B7. Find the minimum c such that the following inequality is true for all positive numbers x, y, z:

x3

x3 + y2z
+

y3

y3 + z2x
+

z3

z3 + x2y
≤ c.

B8. (Mexico 2020). Let n ≥ 2 be a positive integer. Let x1, x2, . . . , xn be non-zero real numbers
satisfying the equation(

x1 +
1

x2

)(
x2 +

1

x3

)
. . .

(
xn +

1

x1

)
=

(
x21 +

1

x22

)(
x22 +

1

x23

)
. . .

(
x2n +

1

x21

)
.

Find all possible values of x1, x2, . . . , xn.

B9. (IMO 2018). Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . an+2 satis-
fying an+1 = a1, an+2 = a2 and

aiai+1 + 1 = ai+2,

for i = 1, 2, . . . , n.

B10. (USAMO 2021). Let n ≥ 4 be an integer. Find all positive real solutions to the following
system of 2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1

B11. (ISL 2021). Let n ≥ 2 be an integer and let a1, a2, . . . , an be positive real numbers with sum
1. Prove that

n∑
k=1

ak
1− ak

(a1 + a2 + · · ·+ ak−1)
2 <

1

3
.

B12. (IMO 2006). Determine the least real number M such that the inequality

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| ≤ M(a2 + b2 + c2)2

holds for all real numbers a, b and c.

B13. (APMO 2022). Let a, b, c, d be real numbers such that a2 + b2 + c2 + d2 = 1. Determine the
minimum value of (a− b)(b− c)(c− d)(d− a) and determine all values of (a, b, c, d) such that the
minimum value is achieved.

C1. (APMO 2024). Let n be a positive integer and let a1, a2, . . . , an be positive reals. Show that

n∑
i=1

1

2i

(
2

1 + ai

)2i

≥ 2

1 + a1a2 . . . an
− 1

2n
.
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C2. (China 2018). Let A1, A2, · · · , Am be m subsets of a set of size n. Prove that

m∑
i=1

m∑
j=1

|Ai| · |Ai ∩Aj | ≥
1

mn

(
m∑
i=1

|Ai|

)3

.

C3. (ISL 2018). Find the maximal value of

S = 3

√
a

b+ 7
+ 3

√
b

c+ 7
+ 3

√
c

d+ 7
+ 3

√
d

a+ 7
,

where a, b, c, d are nonnegative real numbers which satisfy a+ b+ c+ d = 100.

C4. (ISL 2004). Let a1, a2, . . . , an be positive real numbers, n > 1. Denote by gn their geometric
mean, and by A1, A2, . . . , An the sequence of arithmetic means defined by

Ak =
a1 + a2 + · · ·+ ak

k
, k = 1, 2, . . . , n.

Let Gn be the geometric mean of A1, A2, . . . , An. Prove the inequality

n n

√
Gn

An
+

gn
Gn

≤ n+ 1

and establish the cases of equality.

C5. Let a, b, c, d be non-negative real numbers such that a+ b+ c+ d = 6. Prove that

(a− b)(a− c)(a− d)(b− c)(b− d)(c− d) ≤ 27.
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